The DART mission

Two years ago I published a detailed blog post: Will an asteroid hit Earth? In that post I discussed the scenario that an asteroid had been discovered on a collision course with Earth and what could be done to avoid such a possibly catastrophic collision. One option is to send a spacecraft to the asteroid and let it crash with it. The impact should change the course of the asteroid, so it would no longer hit Earth.. The DART mission will test the feasibility of this “kinetic impactor” technique. DART will be launched on 24 November, so it is time for an update.

The acronym DART stands for Double Asteroid Redirection Test. Target for DART is the minor asteroid Didymos, discovered in 1996. It has a diameter of 780 meter and orbits the sun in 2.11 year. In 2003 it was discovered that Didymos has a small moon with a diameter of 160 meter. This moon has been named Dimorphos , it orbits Didymos in about 12 hour at a distance of 1.2 km. DART will crash into this moon at a speed of 6.6 km/s. and change its orbit slightly. In the infographic this change is hugely exaggerated. It is estimated that the crash will change the speed of Dimorphos only about 0,4 mm/s and its orbital period about 10 minutes

Originally DART was part of the much more ambitious AIDA mission. The crash will take place at about 11 million km from Earth. How to observe the effects of the crash? The solution was to launch another spacecraft earlier than DART, which would reach Didymus and go into orbit around the asteroid. This AIM spacecraft , to be developed by the European Space Agency (ESA), would observe the crash and send data back to Earth. It would even deploy a small lander, MASCOT2 to study the properties of Dimorphos.

But in December 2016, AIM was cancelled by ESA, after Germany withdrew the 60 million Euro funding for the project. I commented in the above mentioned blog:

As an European I feel rather ashamed that Europe has acted this way.

NASA decided to continue with DART., which will be launched by a SpaceX Falcon 9 rocket. A fascinating feature from the Falcon 9 is that part of it (the first stage) will return to Earth, land vertically (!) and can be used again for other missions. It will land on a so-called drone ship, an unmanned platform in the ocean. There are three of these drone ships active at the moment, all with poetic names. The Falcon 9 will land on “Of Course I Still Love You” Here is the ship.

And here is a video of the take off and landing. You must see it to believe it ;-).

DART will arrive at the asteroid end of September 2022. The spacecraft will use autonomous navigation to point itself to the moon. It has a camera on board, the DRACO that takes high-resolution photos. On-board software will analyse these photos, be able to distinguish between Dimorphos and Didymos and point Dart to Dimorphos.

About 10 days before reaching its destination, DART will deploy a tiny spacecraft, a so-called CubeSat . This LICIACube has been developed by ASI, the Italian Space Agency and will take pictures of the crash. So at least images of the collision will be sent to Earth.

Here is a short YouTube video of the DART mission. I will point out a few details.

  • 0:07 The nose cone of the Falcon 9 opens to deploy DART
  • 0:15 the solar arrays are unrolled, a new technique. Each one is 8,5 m ;long
  • 0:22 The lens cover of DRACO opens
  • 0:26 Didymos in the center, Dimorphos to the right
  • 0:32 The orbits of Earth and Didymos. They comes close, but are still 11 million km away from each other when DART crashes.
  • 0:37 The Xenon thruster will steer the spacecraft
  • 0:41 The LICIACube is deployed
  • 0:54 DRACO will find the target
  • 0:58 Found the target
  • 1:02 On collision course
  • 1:04 The end of DART

My next update about DART will probably be in October next year.

We are Star Children

Twelve years ago I started an ambitious project, a series of webpages to explain that we can be considered to be Star Children, in the sense that all the atoms forming our body (with the exception of hydrogen), have been formed in the interior of stars.

The project was too ambitious, here is a screenshot of he small part I managed to complete. It is still available on my website. Click on the screenshot to have a look.

An adult human body (70 kg) contains roughly 7×1027 atoms. Written out a 7 with 27 zeros: 7,000,000,000,000,000,000,000,000,000. That is a lot, actually much more than the estimated number of stars in the observable universe (1023-1024).

Most of those atoms are hydrogen atoms. The human body consists roughly of 60% water and each water molecule contains 2 hydrogen atoms and 1 oxygen atom. Oxygen comes second and carbon third. Together with nitrogen these four elements form more than 99% of the human body. For the graphs I have used data from the Wikipedia article Composition of the Human Body. Most of the graphs you find on the Internet give mass percentages, in that case oxygen takes first place. I prefer a representation in atomic percentages.

In this graph some of the other elements are shown. About 25 elements are considered to be essential for human life, some in minuscule percentages. For example Cobalt (in vitamin B12) contributes only 3.0×10−7 %

How, where and when were all these elements formed? The scientific name for the formation of the various elements is called nucleosynthesis.

Let’s start with the beginning, the Big Bang.

About 13.77 billion year ago our Universe came into being. That is the present estimate, with an uncertainty of ± 40 million year. It was unbelievably dense and hot, a “soup” of quarks gluons and photons. Immediately it started expanding and cooling and after a few minutes protons and neutrons could form. Some of these protons and neutrons fused into alpha particles ( two protons and two neutrons) until after about 20 minutes the temperature was too low for fusion.

But still way too hot for (neutral) atoms to form, it was a plasma (protons, alpha particles and electrons). If an electron and a nucleus would combine, the photons would immediately break it up again. Only after ~380.000 year, when the temperature had dropped to ~ 3000 K, electrons could recombine with protons and alpha particles to form H and He atoms. Roughly about 92% hydrogen atoms and 8% helium atoms. (usually mass percentages are given, 25% He and 75% H).

From that time onwards the photons did not interact anymore with matter, the universe was still bathing in an orange glow (3000K) but as the universe kept expanding and cooling, this radiation went from visible light to infrared , microwave etc. It is what we now still detect as the cosmic background radiation at a temperature of 2.275 K. About 1 million year after the Big Bang, the universe was COMPLETELY DARK!

These cosmic Dark Ages lasted for many million years. But small fluctuations in matter density caused gravity to form concentrations of matter. Inside these matter concentrations the temperature was rising until a level (many millions of degrees) that fission became possible again. The first stars were born and there was again light in the universe. Later also galaxies developed and after about 1 billion years the universe was basically like it is now.

Here is an impression of the development of the universe.

We will now concentrate on the evolution of these stars. First a few general remarks. Basically everything that happens in the universe is the result of four fundamental forces.

  1. The strong nuclear force between nucleons, only active when the nucleons are very close together,”short-range”
  2. The electromagnetic force, ~100 times weaker, but “long range”, holds atoms together.
  3. The weak nuclear force, ~ 1 million times weaker, “short-range”, responsible for radioactivity.
  4. The gravitational force, extremely weak, ~1039 times weaker, “long-range”.

Back to the new-born star. All four forces are active here. The gravitational force tries to contract the star further. The strong force generates counter pressure, by fusing nucleons together, but those nucleons need to move fast (= high temperature) to overcome the electromagnetic repulsion. The weak nuclear force is needed to transform protons into neutrons. Here is how four protons can produce an alpha particle. Other options are also possible.

Our Sun was born 4.6 billion years ago as a relatively small star, a yellow dwarf. At the moment it is still “burning” hydrogen in its core and will continue to do that for another 5 billion years.

More massive stars will burn a lot faster to counteract gravity. The first stars may have had masses a few hundred times the solar mass, finishing the hydrogen it its core in only a few million years. What next? The core will contract and the temperature will increase. You might expect that fusion would start of two alpha particles into Beryllium (4 protons and 4 neutrons). But there is a problem, that Be isotope is not stable , it has a half live of only 8×10−17 s and decays back into two alpha particles. What will happen occasionally is that during its short lifetime, another alpha particle will collide and form Carbon (6p and 6 n). This is called the triple-alpha process and I will give more details in a separate appendix.

When this helium burning starts in the core, hydrogen burning will still continue in a shell around the core.

In the next phase, when the carbon core has been formed, carbon nuclei will fuse with alpha particles into Oxygen (8p and 8n) surrounded by a helium burning shell. And so on, Neon, Magnesium, Silicon etc. These fusion processes generate less energy than the hydrogen fusion and when iron is reached the fusion stops, fusion to heavier elements would cost energy! The star looks like an onion with its skins.

When there is no more energy to counteract gravity, the star will die in a spectacular fashion, releasing so much energy that for a short time it can be brighter than a whole galaxy. It is called a supernova. A large part of its mass will be ejected into the surrounding space and in the cataclysmic explosion many of the elements heaver than iron are formed. What remains of the star is a neutron star or a black hole.

Recently I have written a blog about the Witch’s Broom nebula, the remnants of a supernova explosion. More details in that blog. The most famous of these supernova remnants is the Crab Nebula. The supernova has been recorded by Chinese astronomers in 1054. The center of the nebula contains a neutron star.

Here are a few more examples. They are all false-color images (see my Witch’s Broom blog). Here is a List of Supernova Remnants.

As a result of these supernova explosions the clouds of interstellar gas became more and more “polluted”, no longer consisting of only hydrogen and helium. . It is from these clouds that new stars are born. For example our Sun, 4.9 billion year ago. Still mostly hydrogen and helium but about 0.1 % of the other elements. The big gas planets are also mostly H and He, but the rocky inner planets (Mercury, Venus, Earth and Mars) consist mainly of this 0,1 % other elements, as the hydrogen and helium have been “blown” away by the Sun.

Here is Earth, our Blue Marble, the iconic picture was taken by the crew of the Apollo 17 in 1972. Basically all its atoms have been forged in the interior of stars.

And the same holds for all living creatures, including us. Life on Earth is carbon-based, and each carbon atom has been fused in the interior of a star through the triple-alpha process.

We are Star Children
———————————————–

APPENDIX

The energy that is released when particles are fused is called the binding energy of that particle. For nuclear processes this energy is usually given in MeV (Million electronVolt). 1 MeV = 1.6×10-13 Joule. An alpha particle has a binding energy is 28.3 MeV. It is this (large) energy which generates pressure to counteract gravity in the interior of stars.

To fuse two alpha particles into beryllium is a different story. You have to add energy (it has a negative binding energy). Not much, 0.092 MeV, but as a result it is unstable, it will decay in two alpha particles. When the British astronomer Fred Hoyle in the 1950s studied the process how elements were formed in the interior of stars, he and others discovered this bottleneck.

During its short lifetime beryllium may fuse with another alpha particle into carbon and that will release energy, 7.367 MeV. The fiery furnace in the core of the star where fusion occurs would contribute another 0.3 MeV. Hoyle calculated that in most cases this “excited” carbon nucleus will decay into alpha particles instead of releasing the extra energy as gamma rays and settling down in its ground state. It could not explain the large amount of carbon found iin the universe.

UNLESS the carbon nucleus would have a so called resonance at an energy of ~7.7 MeV, Think about a soprano who can break a glass by letting it resonate with the frequency of her singing! But at that time no such resonance in the carbon nucleus was known.

Hoyle convinced his friend and colleague William Fowler, an experimental nuclear physicist, to search for such a resonance . And they found this excited level exactly at the energy predicted by Hoyle. This resonance level is now called the Hoyle state,

Was this a coincidence? Without this resonance level, carbon would not have been formed and carbon-based life would have been impossible.

Do we live in a Fine-tuned Universe ? Is the universe custom-made for “us” , the Anthropic Principle . Food for thought 😉

The Witch’s Broom Nebula

In April the ESA/NASA project published this stunning image as its Picture of the Week. In this blog I will first show some pictures and then give an explanation and some background information.

The image was taken by the Wide Field Camera 3 of the Hubble Space Telescope.

The image shows a very small part of the Witch’s Broom Nebula, also called the Western Veil Nebula. I have marked the (tiny) location of the detailed image with an x (click to enlarge)

This nebula is in its turn part of the Cygnus Loop. Upper right the Witch’s Broom Nebula, lower left the Eastern Veil Nebula.

Getting confused? Here is the relation between the various images. Left the Cygnus Loop, in the middle the Witch’s Broom and right the detail.

The Cygnus Loop is located in the constellation Cygnus (the Swan). Deneb and Vega are very bright stars. The Cygnus Loop (Veil Nebula) is marked in the lower left

This YouTube video may also help

_______________________

About the Cygnus loop and the Veil Nebula

The Cygnus loop and the Veil Nebula are the remnants of a supernova. Many thousands year ago a massive star (much more massive than our Sun) had used up all its “fuel” and exploded in a final spasm before dying. In that explosion, much of the star material is ejected, leaving behind a neutron star or even a black hole. For a short period the star can outshine its whole galaxy!

In this NASA infogram, the development of such a massive star is given. It contains lots of information, but you can skip the details for this blog.

Much research has been done about the Cygnus Loop, the Veil nebula and the star that caused it. The Cygnus Loop is huge, its diameter is about six times the diameter of the moon. You need basically a telescope to see it.

It is a so-called emission nebula. The gas and dust in the nebula is ionised by the shockwave of the exploded star and the light we observe is the light emitted by the atoms in the nebula. The color of the emitted light depends on the kind of element. Very simplified: hydrogen emits reddish light, oxygen bluish light etc. When you look at the image of the Witch’s Broom nebula, you see that it mainly consists of (ionised) hydrogen and oxygen.

Determining the distance of the Cygnus Loop is a complicated process and you will find many values on the Internet. A distance of ~ 2400 lightyear is nowadays accepted by most astronomers. This would give the actual size of the Cygnus Loop as 130 lightyear! The loop is still expanding with a speed of ~ 1.5 million km/h

When did the star explode? Many different estimates. In the release of the first picture above a value of ~10000 year is given ( and a distance of 2100 lightyear). Humans living in that time would have observed the sudden appearance of a very bright “new” star, brighter than Venus and probably even visible in broad daylight. That explains the name (super)nova with nova meaning new in Latin. Supernovae are very rare, the last one in our own Milky Way, visible from Earth, was observed and studied by Kepler in 1604.

Scientists are still searching for a neutron star, or a blackhole in the center of the nebula, but until now nothing has been found.

A lot more can be said about supernovae. In the infogram above they are called “Engines of Creation” and that is an apt description. After the Big Bang the Universe consisted of hydrogen and helium, there was no oxygen no sulfur, no calcium, no iron etc. But Earth and all living creatures are built from those elements. How come? The answer is simple, all those elements have been formed inside stars! We are literally Star Children.

_______________________

About the pictures

The Wide Field Camera of the Hubble Space Telescope takes colorful pictures. Wrong! It takes black and white pictures as do basically all other telescopes. But it uses a filter to select only a specific color (range). And it takes pictures of the same object using other filters, selecting different colors. For the picture above with the stunning details of the Witch’s Broom five filters were used. And those filters are not just simple pieces of red, green or blue glass. A widely used filter is the H-alpha filter, that only lets through the red light of hydrogen (technically: a wavelength of 656 nm, bandwidth a few nm). Here is a picture of the Cygnus loop, using a H-alpha filter.

Compare it with this photo, taken with a color camera without any filters. Dominated by the numerous stars, the Witch’s Broom nebula is (almost) invisible,

Other popular filters in astrophotography are SII and OIII filters They select the colors of ionised Oxygen blueish and Sulfur (reddish) respectively and block all the other colors.

Combining pictures, taken with different filters, you must assign colors to the black and white images. One option is to choose colors that correspond closely to the color of the filter. In that case the result will look more or less “natural”. The red-blue image of the Cygnus loop is a result of combining the H, O and S filters. But of course you can assign different colors to the B&W pictures. Like in the image below, where hydrogen is green(!), oxygen blue and sulfur red.

The Hubble Space Telescope can also use infrared or ultraviolet filters. Here is the Cygnus loop in ultraviolet, blue has been assigned to the B&W image.

The Hubble website has a very informative section The meaning of color in Hubble Images. It shows how the B&W images can be combined in various ways. Very readable, with examples. Here are three.

Left is Mars, where the three filters have been assigned their “real” color. In the middle the famous “Pillars of Creation”, a star forming region. The red hydrogen is depicted in green, the red sulfur light in red and the green oxygen light in blue. The last example shows Saturn in unusual colors, because the B&W pictures were taken with various infrared filters. Near infrared is shown as blue, the middle range as green and the far infrared as red.

Finally here is again April’s Picture of the Week . The text says that It is a combination of five B&W images, Hydrogen in red, oxygen in blue and sulfur in green. No information about the other two.

Perseverance

Are you staying up tonight?, a friend asked me a few weeks ago. No, why? , I replied. He knows about my interest in space travel and expected that I was aware of the landing of a spacecraft on Mars that night. But I was not 😉

I checked the timing, the Perseverance would land at 4:55 am in the morning of 19 February (Malaysian time). In this blog I will explain why I decided to enjoy my sleep and check the next morning if the landing had been successful 😉

In 2018 I wrote a blog Landing on Mars, in which I described the various Mars missions, concentrating on the Curiosity Mission of 2012. The procedure to land the Curiosity was new, using a so-called sky-crane for the last phase.

Here is a diagram of what is called the Entry, Descent and Landing (EDL) process. The spacecraft enters the (thin) Martian atmosphere with a velocity of ~ 20.000 km/h. About 7 minutes later it must land on the surface with a velocity of less than 1 m/s. As signals between Earth and Mars take about 11 minutes, EDL can not be controlled from Earth, the whole process must have been programmed in the computers on board. Mission Control can only wait and see. That’s why these 7 minutes have been called the seven minutes of terror.

In my 2018 blog I describe the three phases in more detail, here is an very informative animation.

In 2012 everything went well, the Curiosity is actually still operational at the moment, much longer than originally planned.

The Perseverance that landed last week, has followed the same EDL procedure. Of course it must have been a relief for Mission Control that it was again a smooth process, but to keep calling it seven minutes of terror is exaggerated. That’s why I decided to enjoy a good night’s sleep. Here is the EDL process for the Perseverance. As you see it is basically the same as for Curiosity.

The two rovers also look the same. To the left Curiosity, the official name of the mission is Mars Science Laboratory (MSL). The Perseverance, to the right, is part of the Mission 2020 project.

Of course there are differences. The wheels have been redesigned, the robotic arm is heavier and the rover carries more cameras, 23 in total. Notice the “hazcams” at the front and the back of the rover, to avoid obstacles. Sherloc, Watson and Pixl are science cameras, I will tell a bit more about them later.

Some of the cameras have not a real science function, but have been added mainly to please the general public 🙂 . The back shell has a camera looking up to see how the parachute deploys. The camera of the sky-crane is looking down and can follow how the rover is being lowered to the ground. And the rover has a camera looking upwards to see the sky-crane. And a camera looking downward to the ground. That one is important, the spacecraft has a digital map of the surface and uses the camera images with a lot of AI to steer to the right location.

Keep in mind that all these images can only be transmitted back to Earth, after the spacecraft has landed. During the EDL, Mission Control only receives telemetry signals (altitude, speed etc). NASA has published a spectacular video where those messages are combined with the camera images. This is a YouTube video your really should watch (several times!). No wonder that this video has already been viewed more than 14 million times.

This map of Mars gives the location of the NASA missions. Insight and Curiosity are still operational. For a list of all Mars missions, click here.

Perseverance has landed in the Jezero crater. In this picture, taken by the Mars Express orbiter, I have marked the landing location with a cross.

This amazing photo has been taken by the Mars Reconnaissance Orbiter, one day after the landing. During the EDL the heat shield, the parachute and the sky-crane (descent stage) have to be jettisoned away from the rover. When you enlarge the picture above, you can just see the two small craters.

———————————————–
Perseverance’s mission

Now that Perseverance has landed successfully on the Red Planet, what is it going to do? The missions of Curiosity and Perseverance are basically the same, to determine whether Mars ever was, or is, habitable to microbial life.

When Mars was a young planet, billions of years ago, water was abundant, there were lakes and rivers, similar to young Earth. On Earth life started about 3,5 billion years ago in the form of microbes. Fossil remains of these microbial colonies are called stromatolites. Here is an example, found in Australia, ~ 3.4 billion year old.

Could primitive microbial life have started on Mars in a similar way? Curiosity landed in the Gale crater, created about 3.7 billion year ago by a gigantic meteor impact. The crater became a lake, rivers deposited sediments. Curiosity collected surface material with its robotic arm, pulverised and heated it, before using a variety of analysing tools. Many organic molecules were found, for example thiophenes. which, on Earth at least, are primarily a result of biological processes.

Mars Mission with the Perseverance will continue this research with advanced technology.

Here is an artist impression how the Jezero crater may have looked like, when it was filled with water. Notice the river, top left, flowing into the lake. That river deposited a lot of sediments in the lake and it is near these sediments that Perseverance has landed.

A detailed map of the landing region, with the various geological structures in different colors. The “valley” of the former river and the delta are clearly visible The location of the rover again marked with a cross. The scientists have already made a proposal how the rover will explore the region (yellow line). The mission will take at least one Mars year (687 Earth days). If you want more information why the Jezero crater was chosen, click here.

The robotic arm has three scientific instruments, the PIXL, SHERLOC and WATSON. PIXL stands for Planetary Instrument for X-ray Lithochemistry . SHERLOC is an acronym for Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals and WATSON represents a Wide Angle Topographic Sensor for Operations and eNgineering . Engineering sense of humor.

PIXL is the main instrument. It points a very narrow X-ray beam at a piece of rock and detects the reflected light (fluorescence ), which is characteristic for the chemical elements in the rock. By analysing this reflected light, PIXL hopes to find biosignatures. Here is an artist impression of PIXL in action.

SHERLOC searches for organics and minerals that have been altered by watery environments and may be signs of past microbial life . Its helper Watson will take close-up images of rock grains and surface textures.

Suppose that Perseverance finds promising locations during its traveling. Wouldn’t it be wonderful if scientists on Earth could study the material at these locations in greater detail?

Well, that is exactly the most ambitious part of the Mars 2020 project, to bring back rock and regolith back to Earth. When you are a follower of my blog, you may remember that Hayabusa2 has brought back material from the asteroid Ryugu, and of course moon rocks have been brought back. But never yet material from a planet.

The robotic arm of Perseverance contains a drill, which can collect core samples. Here it is ready to start drilling.

The core sample (comparable in size with a piece of chalk) is put in a sample tube and taken over to the body of the rover where a few measurements are made. Then it is hermetically sealed to avoid any contamination, and temporally stored in a cache container. The container has space for 43 tubes. Here is an example of a sample tube.

Watch the video to follow the complicated process. Three robotics arms are used!.

How to get these sealed tubes back to Earth? NASA and ESA (the European equivalent will work together in what at first sight looks almost like science fiction. Actually it is still partly fiction at the moment! Here is the plan.

In July 2026 (!) a spacecraft will be launched, consisting of a lander and a rover. In August 2028 it will land near the Perseverance.

Here the spacecraft has landed on the surface of Mars, the rover still has to be deployed.

The only function of the rover is to fetch the sample tubes and bring them back to the lander. In this artist impression it is suggested that the sample tubes are scattered around, but that doesn’t make sense to me. Probably Perseverance will have created a few depots, or even kept all tubes in its own storage. The various descriptions I have found on the Internet, are not clear about this. The whole Return Mission is very much work in progress.

Here the tubes are handed over by the “fetch rover” to the lander, where they are put in the Sample Return Container.

The Sample Return Container might look like this. It will be designed so that the temperature of the samples will be less than 30 degrees Celsius.

The container will be loaded in a rocket, the Mars Ascent Vehicle, which will be launched in spring 2029.

The rocket will bring the container in a low Mars orbit and release it there..

In the meantime In October 2026 the Earth Return Orbiter has been launched, it will arrive at Mars in 2027 and lower its orbit gradually to reach the desired altitude in July 2028. There it will wait to pick up the container.

After the Earth Return Orbiter has caught the container, it will “pack” it in the Sample Return Capsule (SRC) and then go back to Earth, where it will arrive in 2031, ten years from now. It is this SRC that will will be released and finally land on Earth.

Here is a simulation of the procedure.

The primary mission of Mars2020 is to determine if Mars was habitable in the past. But there are also secondary missions. On board of the Perseverance there is one experiment, called MOXIE, that will produce oxygen from the carbon dioxide in the Martian atmosphere. Just a proof of concept experiment, important for future human missions to Mars.

Quite spectacular is that Perseverance is bringing a small helicopter, the Ingenuity. The Mars atmosphere is thin, but the helicopter should be able to fly. A bit similar to a drone, flying a few meter high, and maximum 50 m away. At the moment it is still hanging under Perseverance, planning is to test it after a few months. Here is an animation

At the moment Perseverance is testing al its components. It has made its first test drive, only a few meters. Here is a picture, you can clearly see the tyre tracks.

If there is more news about the Mars2020 mission, I will update this blog or write a new one.

Let me end this blog with an animation created in 1988 (!) , describing a Sample Return Mission to Mars. Fascinating to watch.

Dust Grabbers

Two years ago I have written a post, Hayabusa2 , about a Japanese spacecraft and a few months later an update, Solar System Explorers, in which I mentioned the American spacecraft Osiris-Rex.

The two spacecraft have in common that they have a similar mission: travel to an asteroid, collect some surface material from it and bring that back to Earth. That’s why I have given this post the frivolous title of Dust Grabbers.

When I wrote the two posts, both spacecraft had arrived at their respective destinations, but had not yet collected asteroid material. Now they have, so it is time for an update.

First about Hayabusa2. Here are asteroid Ryugu and the Hayabusa2 spacecraft.

After reaching Ryugu, Hayabusa2 had already successfully dropped two Minerva rovers and the Mascot lander on the surface of the asteroid (see my first report). The surface of the asteroid was much rougher than expected, here is a picture taken by one of the Minerva’s.

For the touchdown, Hayabusa2 needed a flat surface, without boulders or big rocks and it was difficult to find a suitable location. In my first report I have described the touchdown, here is a very informative animation of the process. Two screenshots, left just before the touchdown, right just after. Notice how flat the asteroid surface is in the animation.

The touchdown was originally planned for October 2018 but postponed, to give the scientists time to redesign the touchdown procedure and check if navigation could be made accurate enough to land in a very small region.

On 6 February JAXA (the Japanese equivalent of NASA) published an extensive pdf-file for the press, Asteroid explorer, Hayabusa2,reporter briefing with a detailed description of the redesigned touchdown. A location had been selected and a target marker (TM) had been dropped near the chosen location. A TM is a small (10 cm) ball of reflecting material, you can see it in the animation screenshots above, left in the foreground.

The actual touchdown finally took place on 22 February 2019. One day earlier Hayabusa2 had already descended slowly from its home position (HP) at 20 km altitude to an altitude of 45 m. Here is a time diagram of the touchdown phase. Notice that between 7:07 and 7:50 JST time, there is no communication between the spacecraft and mission control.

Also keep in mind that the touchdown is an autonomous process, because it takes 15 minutes for a signal from Earth to reach the spacecraft. All steps have been programmed by the scientists and engineers.

Try to imagine the tension in Mission Control during this “blackout” period. And the explosion of joy when the first signals from the spacecraft showed that it was still alive.

At first this is the only thing they know, that Hayabusa2 is still alive. Only later images and data were coming in. A small video camera was mounted next to the collecting horn and recorded the touchdown. Have a look at the video Here are two screenshots, before and after touchdown. I have indicated the position of the target marker, it is the white stip inside the blue circles. Also notice the surprising amount of rubble whirled up after the touchdown, mostly caused by the thrusters firing.

Originally a second touchdown was planned at a different location, but this was cancelled because of the rugged surface of Ryugu. Instead the scientists concentrated on the most ambitious part of the program. The first touchdown had collected some surface material of the asteroid. Technically called regolith . This material has the same age as the asteroid itself, but has been exposed during millions of years to solar wind and radiation.

Of course it would be very interesting to collect some asteroid material from BELOW the surface. Here is the ingenuous plan developed by the Japanese scientists:

  • shoot a projectile to Ryugu to create an artificial crater.
  • touchdown later in the crater to collect some newly exposed material.

And that’s what they did! I have described the working of the so-called SCI (Small Carry-on Impactor) in my first post. Basically it is a copper projectile (2 kg) that hits the surface of Ryugu with a speed of 2 km/s, creating a crater of several meters diameter. Here is a diagram of the operation. Lots of details, I will point out a few. The operation took place on 5 April 2019.

Hayabusa2 descends from HP to an altitude of 500 m and releases the SCI with a downward speed of 20 cm/s. Here you see a time-lapse of the deployment. It takes about 40 minutes for the SCI to reach the surface and detonate. The detonation will cause a lot of debris, so Hayabusa2 must take shelter and does that by moving horizontally away and then down into the “shadow” of Ryugu.

Before disappearing below Ryugu’s horizon Hayabusa2 deployed a camera (DCAM3) to take pictures of the explosion. Here are some images. Not that spectacular for a layman, but apparently the scientists were able to draw conclusions from the vague plumes of debris that are visible.

Because of Ryugu’s weak gravitation it takes days before the debris of the explosion settles down. Notice times and distances in the diagram, Hayabusa2 moves away horizontally for about 100 km before “climbing up” again and finally reaches HP more than 10(!) days after the deployment of the SCI.

After the successful creation of an artifical crater, Hayabusa2 descended a few times above the crater to explore the new situation. Was it feasible to touchdown in or near the crater to collect material, exposed by the explosion, without jeopardizing the success of the first touchdown? On 8 July Jaxa published a very readable report discussing the pros and cons of a second touchdown: To go or not to go . It was decided to go and have a touchdown in the region C01-Cb, not really inside the crater but on the rim. Here are two images to show the touchdown area. The left image shows the artifical crater at the bottom right, the right image gives details about the size of rocks near the touchdown.

The procedure for the second touchdown was basically the same as for the first one. During one of the descends a target marker was released and on 11 July 2019 the touchdown took place. A sample was collected successfully.

Mission accomplished, time to go home. How to deliver the two samples to Earth? Have another look at the Hayabuss2. I have indicated the Sampler Horn and the SRC, the Sample Return Capsule. In this tiny (40 cm diameter) capsule the two samples have been stored (right diagram) and it is this capsule that will be released when Hayabusa2 arrives back at Earth.

After leaving Ryugu on 13 November 2019,Hayabusa2 l will reach Earth on 6 December 2020, using its ion engines for navigation.

Here is a diagram of the SRC return. The capsule will enter the Earth atmosphere with a speed of 12 km/s, the heat shields will protect the sample container. At 10 km altitude a parachute will be deployed.

The planned landing location is the Woomera desert in Australia, about 450 km north-west of Adelaide. Expected landing 6 December between 2:47-2:57 JST. It will take time to find the capsule, hopefully within one day. Here is a photo of the Woomera desert.

JAXA is maintaining a monumental website about Hayabusa2, updated with the latest news: JAXA Hayabusa2 Project.

After this long report about Hayabusa2, I will be much shorter about the Osiris Rex mission. Here is asteroid Bennu, smaller (~500 meter) than Ryugu (~ 900 meter). Both asteroids are spinning fast (~ 4 and ~ 8 hours respectively) and that might partly explain their similar shape of a “spinning top”. Although the material of these asteroids is about 4.5 billion years old, both were probably formed after a catastrophic collision of parent asteroids, millions of years ago.

The Osiris Rex spacecraft has a similar design as the Hayabusa2, with a SRC csapsule for the collected asteroid material. But there is one big difference, instead of a sampler horn, the Osiris Rex has a robotic arm, which can be unfolded and grab regolith while the spacecraft is hovering above the surface.

This has its advantages. The Hayabusa2 has to touch the surface (through its horn) and therefore has to worry about rocks nearby. The robotic arm is longer (about 3 meter) and more flexible. Another advantage is the way of collecting regolith. The Hayabusa2 fires a tiny bullet inside the horn and catches the regolith that is swirling upwards. That will not be much, the team is hoping for 1 gram (!) of material. Only after the capsule is opened the mass of the samples can be measured.

The TAGSAM robotic arm of Osiris Rex works very differently. As soon as the sampler touches the surface, nitrogen gas is blown through the arm and regolith will be collected, almost like a vacuum cleaner. Here is a nice animation of the process.

The TAGSAM procedure took place on 20 October 2020 and was very successful, it is estimated that about 60 gram was collected. (For physicists: how can they know that now already? By using a clever trick, rotating the spacecraft and unfolded robotic arm before and after collection, a difference in the moment of inertia will be observed)

The spacecraft will leave Bennu next year and will return to Earth on 24 September 2023, deploying the SRC capsule to land in the Utah desert.

These has been close cooperation between JAXA and NASA. They will share a percentage of the collected material with each other.

TRIVIA:

Brian May, the lead guitarist of Queen, is also an astrophysicist and quite interested in the Hayabusa2 project. During a Queen tour in Japan in January 2020, he met a few project people: Meeting Brian May.

Because of the Covid19 pandemic, the Japanese Sample Collection Team had to arrive early in Australia (with special permission) and first go into 14 days compulsory quarantine . Here a team member is standing at the heliport where the search for the capsule will start.

The Game of Life

Last month the English mathematician John Conway passed away at the age of 80. His name may not be familiar to many of you, but he was the inventor of the Game of Life, in 1970. For several years I have been interested in this game. A suitable time to write a blog about it.

When Conway was still an undergraduate at Cambridge University in the sixties, he became interested in “recreational” mathematics and got in contact with Martin Gardner, who had a popular column “Mathematical Games” in the Scientific American. In October 1970 Gardner published in this column The fantastic combinations of John Conway’s new solitaire game “life” Read here and here interviews with Conway about how he invented the game and that for a long time he actually hated it.

The game is played on a grid of adjoining cells, which can be either alive (black) or dead (white). Each cell is surrounded by eight neighbouring cells and what happens to a cell depends on how many neighbours are alive. These are the rules:

1. When a living cell has 0 or 1 living neighbours, it will die.
2. A living cell with 2 or 3 living neighbours will stay alive.
3. A living cell with 4 or more living neighbours will die.
4. A dead cell with exactly 3 living neighbours will become alive.

With zero or one neighbours you will die from loneliness, with four or more neighbours you die from overcrowding. With two or three neighbours you survive and when there are three parents around, a new baby is born. It looks a bit like life 😉

Of course other rules are also possible and it took Conway considerable time to find rules that gave interesting results. As there were hardly any computers in those days, they used a go board to follow the development of (simple) patterns!

Here are a few simple examples to show how the rules work. I have indicated the number of living neighbours in each cell. Living cells that will survive have a yellow number, those that will die have a red one. An empty cells with three neighbours gets a blue number. After the start pattern I have only marked the cells with get a colored number.

Two patterns have died, two became stable (one of them oscillating).

Here is a pattern of 5 cells. Again I count the number of neighbours, using the same colours, blue, yellow and red for birth, life and death. After 4 generations the original pattern appears again, but diagonally shifted one cell! This pattern has got a name, it is called a glider, it will continue moving diagonally

This pattern of 5 cells is very similar, with only the leftmost cell shifted to the right, but the behaviour is very different! It “explodes” rather chaotically, grows to a maximum of more than 200 cells and finally becomes stable after 1103 generations with 116 living cells, including 6 gliders (notice that three of them are escaping at t = 150). This configuration is called the R-pentonimo .

Of course you can not follow the development of such a pattern with pen and paper or a go-board. You need a computer. In those days they were huge and expensive machines. Here is a PDP-7 computer similar to the one used by Conway. The right picture shows the display screen running a life pattern. Click here for a video. The computers were still so slow that Conway was only able to follow the development of the R-pentomino until t = 460, when the article was published.

Here are a few more interesting patterns. This one is called a Heavyweight spaceship. It moves, like the glider, but orthogonally, two cells in 4 steps.

And here are three oscillators. From left to right Figure Eight (period 8), Pulsar (period 3) and Fumarole (period 5)

The publication in the Scientific American aroused a frenzy of interest among professional mathematicians and amateurs alike. Conway thought himself that no pattern could grow indefinitely and offered a prize of 50 dollar to the first person who could prove or disprove this conjecture before the end of 1970.

It took only a couple of weeks before an MIT group constructed a pattern that generates a glider every 30 moves. therewith proving that patterns can grow indefinitely. It is called the Gosper Glider Gun. and one of the many guns that have been found since then. Keep in mind that all this is the result of 4 simple rules 😉 .

Fifty years have passed since Conway’s invention of the Game of Life, and there is still considerable interest, leading to new interesting patterns every year. There exists a comprehensive Life Wiki, similar to Wikipedia, containing at the moment more than 2100 articles. Here is the main page of the wiki.

Notice at the right a list of pattern categories. The Wiki contains at the moment more than 1350 pattern pages. Each page gives a description of the pattern and an option to watch the development of the pattern, by launching the so-called Lifeviewer at the right side of each page. I have linked the patterns described above to the corresponding Wiki page.

There is a yearly competition for the Pattern of the Year . Here are a few winners :

  • David Hilbert (2019) , 122 cells an oscillator with period 23
  • Sir Robin (2018) , 282 cells, a spaceship moving in an oblique direction
  • Lobster (2011), 83 cells, another spaceship, diagonally moving

Not always use the creators fancy names. Here is the p416 60P5H2V0 gun (left image) It has 26342 cells and fires gliders from four directions which collide in such a way that every 416 generations a 60P5H2V0 spaceship (right image) is produced. The center image shows a just completed spaceship, while gliders are already approaching to form a new one. Fascinating. When you click on the image, you can watch a YouTube video of the process.

You can play with the Lifeviewer , by clicking the image below. You start with a blank grid, where you can draw any pattern you like. The Lifeviewer is versatile and powerful, it may take some time to get to know all the options, just give it a try!

Let me finish this post with a few general remarks.

  • The Game of Life is deterministic but unpredictable. Simple rules lead to complex behavior. All my life that has been a topic of great interest to me.
  • When I got my first desktop computer, in the eighties, I wrote my own Game of Life program, in Pascal and partly in Assembler. I took part in a competition. No prize but a honourable mention that my program was very fast. Nowadays a lot of software exists, powerful and of course much faster. Golly is the most popular one, you can download it here.
  • The Game of Life is much more than a collection of beautiful patterns. It has been shown by Conway himself that the Game of Life is a Universal Turing Machine, it can perform any calculation that a computer can do. The Pi-calculator calculates the decimal digits of π , the Primer uses the Sieve of Eratosthenes to determine the prime numbers. AND and OR gates can be constructed, etc.
  • The Game of life is an example of what is called a Cellular Automaton.
  • Martin Gardner has written three columns about the Game of Life. Here is the pdf-file with all three articles.

Betelgeuse

Most of you will know the constellation of Orion. Here is an image taken by the Hubble Space Telescope. The bright reddish star, forming the left shoulder of the Hunter, is called Betelgeuse. Recently this star has been in the news, because there were indications that it might explode in the (near) future.

With the present level of light pollution, it is often difficult to observe the colors of stars, and you will see only the brightest. Of course a star closer to the Sun will look brighter than a star many hundreds of lightyears away. Taking the distance into account, astronomers can determine the intrinsic brightness of a star, called the luminosity. When you plot the luminosity of stars against their color, you get the diagram below. It’s called the Hertzsprung–Russell diagram, named after the two astronomers who created it around 1910.

As you see, the diagram has a lot of structure and it has helped astronomers a lot to understand how stars evolve. The vertical axis gives the luminosity, in units of the Solar luminosity, while the horizontal axis gives the surface temperature of the star, which is directly related to its color. Notice that the temperature decreases from left to right.

The position of some well-known stars is indicated. Of course our Sun, a yellowish star. Betelgeuse can be found in the upper right corner. it has a luminosity of ~ 100.000 times the Sun ! It is a so-called Red Supergiant Star. A giant star, it’s size is about 900 times the size of the Sun. If it would replace the Sun, we would be swallowed, it would extend to the orbit of Jupiter. The reddish color means that its surface temperature is about 3000K

There are also Blue Supergiant Stars. An example is Rigel, also in Orion (his right leg) with a surface temperature of 11000 K. And there exist White Dwarf Stars, with a size 0.1-0.01 times the Sun, and Giant Stars.

Along the diagonal in the HR diagram you will find the Main Sequence Stars. Most stars are located in this band. Here is a plot of 23000 individual stars in the HR diagram

To understand what will happen in the (near) future to Betelgeuse, I must explain a bit about how stars are formed and how they evolve. Stars are born when clouds of interstellar matter (mainly hydrogen and helium) contract as a result of their own gravity. This contraction increases the temperature in the interior of the cloud until the core becomes so hot ( about 15 million Kelvin) that fusion of hydrogen becomes possible. The energy and radiation from this fusion stops the gravitational contraction, a star is born! Here is a very simplified picture of the fusion process.

Let’s look at the star nearest to us, our Sun, It was born about 4.6 billion years ago, and its total lifetime is estimated to be around 10 billion year, so at the moment it is about halfway its life. Here is a sketch, the fusion takes place in the core, the radiation is transported to the surface (photosphere), resulting for the Sun in a surface temperature of about 5800 K and an orange color.

For a heavier star than the Sun, the inward pressure due to its gravity is stronger, so the counter pressure of the fusion in the core must also be stronger to create a balance. Here are some of the effects:

  • The star is bigger and brighter
  • Its core temperature is higher, the “burning” of hydrogen faster
  • The surface temperature is higher, the color more blueish/whitish
  • The lifetime of the star will be shorter

Here is an example: Sirius, the brightest star in the sky. Its mass is two times the mass of the Sun. Compared to the Sun, its radius is 1.7 times larger, its luminosity 25 times larger, its surface temperature is almost 10.000 Kelvin and its lifetime is only about 240 million years. Heavier stars will live even shorter.

We can now explain the Main Sequence in the HR diagram. It is the location of all “normal” stars, who are burning hydrogen in their core. At the lower right we find the low-mass stars, sometimes called red dwarfs , who burn their hydrogen so slowly that their lifetime is many hundred billions of years, longer than the current age of the Universe! At the top left, high-mass stars burn their hydrogen so fast, that in spite of their large mass they have lifetimes of only a few million(!) years.

What happens after the hydrogen fuel in the stellar core is exhausted? That depends on the mass of the star. We will concentrate in this post on the high mass stars (more than 8-10 solar masses), because Betelgeuse is one of them.

In these massive stars, after all hydrogen in the core has been fused into helium, gravitation will contract the core further, raising its temperature, until helium starts fusing into carbon. At the same time the outer layers of the star expand dramatically, while cooling. The star enters its (red) supergiant phase.

The triple-alpha process, as it is called, generates less energy than the hydrogen fusion. Three helium nuclei fuse into on carbon nucleus. Another simplified image.

When the core has fused into carbon, the process repeats. Gravitation contracts the core, its temperature increases , and another fusion process starts, leading to a neon core. Next an oxygen core, a silicon core and finally an iron core. Here is a sketch. A few comments. Notice the difference in scale. The outer layers of the red giant extend to the orbit of Jupiter, whereas the core has about the size of Earth! As you see, the central core is surrounded by layers of lower temperature where still fusion of hydrogen helium, etcetera is going on. It’s like the layers of an onion.

The red supergiant phase doesn’t last long, astronomically speaking, the energy of these fusion processes is much less than the hydrogen fusion. Here is an estimate of the time spent in each of the phases for a star of 25 solar masses. Notice the columns for temperature and density.

When the core has become iron , no more energy can be obtained from fusion and the end of the star is near. Gravity will finally win, the core implodes into a neutron star or a black hole while the outer layers are blown away in a cataclysmic explosion. It is called a (Type II) supernova. During a couple of weeks, the supernova may outshine the galaxy it belongs to and release more energy than the Sun during its whole lifetime. If the supernova is not too far away from us, it may become the brightest star in the sky, even visible during daylight. It looks like a new star (nova = new in Latin), but actually we are watching the last throes of a dying star.

Supernovas are extremely rare, they occur about once every 50 years in a galaxy the size of the Milky Way. A few have been recorded in human history, nowadays many more have been observed in other galaxies. In 1054, Chinese astronomers observed a new star, so bright that during a few weeks it was visible during daylight. Their accurate description made it possible for modern astronomers to conclude that it was a supernova (SN1054) and to identify the Crab Nebula as the remnant of this supernova. Here is the Crab Nebula. At its center a neutron star has been found, the Crab Pulsar.

Click here for a list of supernovae that are of historical significance. The most recent one in our own Milky Way galaxy was Kepler’s Star, observed in 1604, more than 400 years ago!

Time to go back to Betelgeuse. As mentioned in the beginning of this post, it is a red supergiant star at a distance of about 640 lightyear from us. Its mass is about 12 solar masses and its estimated lifetime about 8 million year. It has fused all the hydrogen in its core and is now burning helium in its core. Here is a computer animation of how Betelgeuse might look like.

The gigantic (convection) bubbles are characteristics for this kind of stars. Our Sun has them too, but on a much smaller scale.

Betelgeuse is a variable star, it changes its brightness in a rather irregular way. Here is a graph showing the brightness of Betelgeuse between 1990 and now..

From the right part of this graph you may understand why first astronomers and later the media and the general public became so excited about Betelgeuse. Starting October 2019, the star began to fade more than usual, and by the end of January 2020 it had dropped almost a factor 3 in brightness. A very noticeable difference, here are two photos.

Could it be that this dimming was a signal that Betelgeuse was on its way to become a supernova? It would be a spectacular event, the star might become as bright as the moon and be visible in daylight for many weeks. A harmless event too, the distance of 640 lightyear is too far away. By the way, light from Betelgeuse takes 640 year to reach us, so it could have been exploded already, without us knowing it yet 😉 .

Here is an example of a newspaper headline, in this case the Daily Mail , 23 December last year.

Not surprisingly observers from all over the world have been looking at Betelgeuse the last few months, as you can see in the graph below, notice the density of observations in the last three months :-).

I am sure it must have been a disappointment for many that the last month, the fading stopped and Betelgeuse started to become brighter again.

The last few weeks scientific papers are appearing with possible explanations for the unusual dimming. Probably it has been caused by dust. Supergiant stars regularly spew out some of their material into space, where it may condense into grainy particles, temporarily blocking the light of the star.

So, no supernova? Well, on the long term, it will. Betelgeuse is dying and will go supernova. That can happen in our lifetime, but it can also take 100.000 years or even more (see the table above with lifetimes of the various fusing phase).

I will end this post with two short paragraphs about related topics.

  1. This blog is about massive stars. Our Sun, a dwarf star, has not enough mass to become a supernova. After exhausting the hydrogen in its core (in about 5-6 billion year) , it will start fusing helium into carbon and oxygen and become a red giant star, swallowing the inner planets, Earth included. But there the fusion stops. Gravity takes over, and the Sun will end as a white dwarf.
  2. In massive stars, fusion ends when the core has become iron & nickel, because further fusion would need energy instead of releasing it. However, during the supernova explosion so much energy is released that elements heavier than iron can be created. Our Sun is a second-generation star, it was formed from an interstellar cloud that contained, besides hydrogen and helium, already material from earlier supernovae. Earth and everything in it, consists of atoms that have been formed in the interior of stars. We are Star Children, each atom in our body (except hydrogen), has been created inside a star!

Night Watch & Starry Night

Hundred years ago, in July 1919, the International Astronomical Union was founded and to celebrate this centenary, an interesting event has been organised, called NameExoWorlds.

A list was prepared of 112 exoplanets and each exoplanet was assigned to an IAU member state. The member states had to organise a public competition to find a suitable name for the exoplanet and its host star. The campaign started in June 2019 and on 17 December the chosen names have been published.

The exoplanet assigned to the Netherlands was HAT-P-6b, orbiting the star Hat-P-6 . Hat-P-6 is a star in the constellation Andromeda, at a distance of 910 lightyear, 30% more massive and also hotter than our Sun. The exoplanet Hat-P-6b has been discovered in 2007 through the transiting method.

It is a gas giant, slightly heavier than Jupiter, orbiting in less than 4 days around its host star. It is an example of what are called Hot Jupiters. Not suitable for life. Here is an image how Hat-P-6b might look like. Much larger because it is hot.

In the Netherlands the public came with more than 6000 suggestions. Most popular were the names Nijntje (for the planet) and Moederpluis (for the star). They are Dutch cartoon characters, famous all over the world. Here is a Japanese version.

A problem was that theses names are copyrighted, so finally number 2 on the shortlist was chosen. Night Watch for the planet and Starry Night for the star.

The Night Watch is a world famous painting by Rembrandt (1642).

And Starry Night is another famous painting, by van Gogh (1889). Now in the Museum of Modern Art in New York.

Are you interested about other exoplanets in the list? Click here and type the country name in the search box.

Or maybe you want to know which names other countries have chosen for their planet and star? Click then here .

As Malaysia is my 2nd home, I will show the results for Malaysia. Here are the exoplanet and the host star

HD 20868 is an orange dwarf star in the constellation Fornax, 156 lightyear away from us and 25 % smaller than the Sun. Its planet HD 20868b is also a gas giant, but orbiting farther away from its star in about 1 year. In the habitable zone, but as it is a gas giant, probably not very suitable for life.

I have no info about the campaign, apparently 1635 proposals have been made. Here is the final choice: the planet and star have been named after the Malay names of gemstones , Baiduri (Opal) for the planet and Intan (Diamond) for the star.

It is quite fun to see what other countries have chosen!

Nobel Prize Physics 2019

The Nobel Prize for Physics has been awarded this year to Jim Peebles for ” theoretical discoveries in physical cosmology” and to Michel Mayor and Didier Queloz for “the discovery of an exoplanet orbiting a solar-type star”.

It happens regularly that the Nobel Prize is split, but in this case there is hardly a connection between the two topics, and the Nobel committee must have realised that,  by adding that the prize this year was won for “contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos”

In this post I will concentrate on Jim Peebles, maybe in a later post I will write more about the discovery of the other two physicists.

The scientific career of Peebles is closely associated with the Cosmic Microwave Background (CMB) radiation, so I will first explain what it is and how it was discovered.

According to the Big Bang theory, the Universe came into being 13.8 billion year ago. Incredibly tiny, hot and dense, it started to expand, while cooling. In the beginning it was a soup of gluons and quarks, but after a few minutes (!) the temperature had dropped so much that “normal” matter, like protons, neutrons and electrons became stable and even some light elements like deuterons and alpha particles could be formed. But it was still a plasma for many thousand years, until after around 380.000 years the universe had cooled so much that electrons and nucleons could form neutral atoms, like helium and hydrogen. From that time onwards until present photons could travel freely, the Universe had become transparent.

In the 1960’s Dicke and Peebles at Princeton studied this Big Bang theory, which was still not universally accepted at that time. If the Universe started with a “primordial fireball” , remaining radiation of this fireball should still be present. But the Universe has expanded about 1000 times since it became transparent, so the wavelength of that radiation has also increased 1000 times! No longer visible (reddish) light, but microwaves with a wavelength in the order of cm/mm’s, corresponding to a temperature of only a few Kelvin.

To detect this kind of radiation you need a microwave radiometer , and two colleagues of Dicke and Peebles, Roll and Wilkinson, also at Princeton, were building one. Then they learnt that two scientists at Bell Laboratories, Penzias and Wilson, only 60 km away from Princeton, were actually working wich such a radiometer and had found results they could not explain. Here is a photo of the Holmdel Horn Antenna, used by Penzias and Wilson.

What was it they could not explain? Well, measuring microwave radiation is not easy, because there is much “noise” from many sources, which you have to eliminate or take into account. What they found was that there always remained a background corresponding to a absolute temperature of 3.5 Kelvin. It did not matter which part of the sky they pointed the horn to, and whether it was day or night, there was always this background. They even cleaned the inside of the horn, removing pigeon droppings!

When the two teams came together, the solution was immediately clear. Penzias and Wilson had inadvertently discovered the Cosmic Microwave Background radiation, predicted by Dicke and his team. “Well, boys, we’ve been scooped “, Dicke supposedly said.

The two groups decided to write separate articles for the Astrophysical Journal of 1965, referring to each other. Cosmic Black-Body Radiation by Dicke, Peebles et al. and , very modestly titled, A Measurement of Excess Antenna Temperature at 4080 Mc/s by Penzias and Wilson.

In 1978 Penzias and Wilson received the Nobel Prize for Physics “for their discovery of cosmic microwave background radiation” Of course many in the scientific community found that the Nobel Prize should have been awarded to both teams. But (old fashioned) Nobel Prize rules made that impossible, teams can not get the Nobel Prize, only individuals (maximum three).

Roll and Wilkinson continued with their experiment and published the results the next year in the Physical Review Letters: ” Cosmic Background Radiation at 3.2 cm-Support for Cosmic Black-Body Radiation. Searching information for this post, I found a fascinating article, written a few weeks ago by Peter Roll, now retired of course, about his perspective on the 1965 discovery of the CMB. VERY readable, also for non-physicists.

I have written in some detail about the discovery of the CMB radiation because the importance of this discovery can hardly be overestimated. It changed the Big Bang theory from a controversial hypothesis into the standard model for the evolution of the universe. Here is another very readable article in Physics Today, one year after the discovery: A Bang, not a Whimper?

Of course there were still many questions. If the radiation was really thermal, it should have a well-defined spectrum. And it was of course very convincing that the radiation was the same at each point of the sky, but actually there should be minuscule differences, how else could stars and galaxies have formed, if the early universe was completely homogeneous?

The best way to investigate these questions, was to launch a spacecraft and observe the radiation outside Earth’s atmosphere. And that’s what happened. In 1974 NASA asked for scientific proposals and in 1989 the Cosmic Background Explorer (COBE) was launched. Two main experiments, FIRAS by John Mather, to determine the spectrum of the CMB radiation and DMR by George Smoot to measure the miniscule differences (the “anisotropy”) of the CMB.

Here is the spacecraft. Dimensions (without solar panels) ~ 4,5 x 2,5 m. The experiments are indicated, the Dewar contained liquid helium to cool especially FIRAS to near absolute zero temperature.

Here are the results. The CMB spectrum fits so perfectly the shape of a thermal source (“blackbody”) that it received a standing ovation when it was presented to the American Astronomical Society in January 1990.

The temperature of the CMB is 2.728 K, but Smoot found indeed tiny differences, depending on the location in the sky. Here is a map of the sky, with the temperature differences indicated in red (slightly warmer) and blue (slightly colder). When these results were published in 1992, they were frontpage news in the New York Times and Stephen Hawking in an interview called it “the greatest discovery of the century, if not of all times”.

In 2006 Mather and Smoot received the Nobel Prize for Physics “for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation”

Through the CMB we are looking back to the very young universe, 380.000 year old, before stars and galaxies were formed. Exploring these temperature differences, may help us to understand the evolution of the universe. But then a more detailed map of this anisotropy is needed!

In 2001 the Wilkinson Microwave Anisotropy Probe (WMAP) was launched. Until 2009 data have been collected, resulting in maps like this one, much more detailed.

And in 2009 the Planck observatory was launched. The instruments on board were cooled until 0.1 Kelvin, making it the coldest object in the universe..:-) Here is the Planck map, even more detailed.

You may wonder about the shape of these maps. It is called the Mollweide projection and it minimises the distortion you always get when you project a sphere on a plane. For comparison, here is the Mollweide projection of Earth.

There are two other discoveries in cosmology during the past 50 years that I have to mention, before I can finally come back to Jim Peebles and his Nobel Prize 🙂

The first one was the discovery of Dark Matter. In the 70s the American astronomer Vera Rubin studied the rotation of galaxies like the Andromeda galaxy and found that the outer regions of the galaxies were rotating much faster than expected, based on the visible matter of the galaxy and Kepler’s laws. An explanation could be that galaxies are surrounded by a halo of invisible (“dark”) matter. The existence of this Dark Matter has been widely accepted by the scientific community, but we still do not know yet what it is. According to many physicists, she deserved a Nobel Prize for her research, but she never got it. Because she was a woman? She passed away in 2016, Nobel Prizes can not be awarded posthumously. Here is a necrology: Vera Rubin, invisible to the Nobel Committee.

The second discovery was made in the 90s by two teams of astronomers who were studying the expansion of the universe. The Big Bang theory predicted that the expansion would slow down, because of the force of gravity. The crucial question was: will this force be big enough to stop the expansion, followed by a contraction, ending in a Big Crunch, or will the expansion go on forever. The result of their research was shocking: the expansion is not slowing down, but accelerating! There must be a repulsive force, which was called Dark Energy. Also here we do not know what it is. In 2011 the leaders of the two teams were awarded the Physics Nobel Prize “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae”. I wrote a blog about it: Physics Nobel Prize (2011).

So, what did Jim Peebles discover? Nothing actually, and that may have been a reason that he received the Nobel Prize so late in life (he is now 84 year old) as the Nobel Committee has a preference for (experimental) discoveries.

But Jim Peebles rightly deserves the Nobel Prize because he has been instrumental in developing the theoretical cosmological framework for what is called physical cosmology. In 1982 he published a groundbreaking article about a cosmological model with dark matter in it and in 1984 an article in which he added the cosmological constant Λ (now called dark energy) to his model. This model , the Λ CDM  model, is at present the standard model of cosmology. For this work Peebles could (should) have been awarded the Nobel Prize many decades ago! Well, better late than never 🙂

With this Λ CDM model, using the properties of the CMB radiation and other experimental results, it is possible to determine how much normal matter, dark matter and dark energy there is in the Universe. The best fit to the (Planck) CMB data is obtained with the following values:

  • Atomic matter 4.9 %
  • Dark Matter 26.8 %
  • Dark Energy 68.3 %

Probably most of you will have seen this result. Everything we observe around us, our earth, the sun, the planets, the galaxies, it is only ~ 5% of our universe. About the other 95% we know basically nothing. Astonishing and mind-boggling.

Let me finish this post with two images. Below is an overview of the Big Bang expansion. The CMB is seen to the left, called the Afterglow Light Pattern. To the left you see “Inflation” and “Quantum Fluctuations”. The present theory is that in the first ~ 10−32 (!) second, the universe expanded exponentially. I don’t feel qualified to write a post about it, see the Inflation article in Wikipedia.

When the universe became transparent after 380.000 year, there were no stars and galaxies yet, the universe was dark, except for the afterglow! It took hundred millions of years, before the first stars were formed. More info in Wikipedia’s Chronology of the universe.

In 1980 Peebles published a book Large-Scale Structure of the Universe and that has always been his primary interest. There are about 200 billion galaxies in the observable universe, are they just randomly distributed? The answer is no, they are part of what nowadays is called the Cosmic Web. They are concentrated along filaments, with huge voids in between. In this artist impression, each light dot is a galaxy. Another mind-boggling image. 🙂 .

In 2013 I have written a post : Largest Structure in the Universe discovered, very readable if I may say so 🙂

APPENDIX

How is it possible to extract the values for dark matter, dark energy etc from a map of the sky with minuscule temperature differences?

The first step is to “translate” the temperature differences into what is called a power spectrum. The CMB map has cold and warm patches in various sizes. A power spectrum gives the intensity of these patches as function from their (angular) size.

Here is the power spectrum of the PLanck CMB map. The largest temperature fluctuations are found in patches of around 1 degree. Notice that the angular scale runs from left (large patches) to right (small patches). The red dots come from the CMB map. The green line is the best fit from the Λ CDM model, using the parameters given above.

Here is an instructive video, how the different parts of the power spectrum correspond from left to right to increasingly detailed structures.

The calculations are complex and need powerful computers.

In this simulation: Build a Universe you can play around with the various parameters. To run it on your computer, you need to have Flash installed. Not everybody will have Flash, so I have taken two screenshots. The first one, shows the “fit” for a universe with only normal matter. The second one uses parameters like given above.

Will an asteroid hit Earth?

Roughly 66 million years ago the Chicxulub asteroid with an estimated diameter of 10 km struck Earth at the Yucatan peninsula in Mexico. It caused an extinction of 75% of all plant and animal species, including the dinosaurs.

In 1908 the Tunguska meteorite exploded above a remote region in Russia, flattening about 2000 km² of forest. Ongoing discussion if it was a comet or an asteroid. Estimated size 30-80 m.

On 15 February 2013 an asteroid, size approximately 20 m, exploded at an altitude of ~ 30 km above the Chelyabinsk district in Russia. The shockwave caused substantial damage, many people were injured by broken glass.

And last few weeks there has been “alarming” news in the media about several “space rocks” threatening to collide with Earth and cause havoc. Foremost in this was the British tabloid Daily Express. Here are a few of its headlines (click on the image to see the corresponding article)

7 September:

Asteroid shock: NASA warns of ‘100 percent’ chance of asteroid impact

27 September:

Asteroid alert: NASA tracks three space rocks heading past Earth at once – Will they hit?

2 October:

Asteroid warning: NASA panic as four killer space rocks avoid horror impact with Earth

NASA panics, warning of a ‘100 percent’ chance of asteroid impact? Hm, time for a post about asteroids and their danger for Earth 😉

Asteroids are “small” rocky objects, billions of them, orbiting the Sun, most of them in the (main) Asteroid Belt, between the orbits of Mars and Jupiter. Small is relative, more than 150 million are larger than 100 meter and the largest asteroid, Ceres, has a diameter of 945 km! Notice the units, used in the picture below. One AU (Astronomical Unit) equals 150 million km, the average distance between Earth and Sun. This unit is often used for distances in the Solar System. For example, Mars orbits at a distance of ~ 1.5 AU around the Sun and the main Asteroid Belt is located between around 2.2 and 3.2 AU.

There are also asteroids outside the main asteroid belt, orbiting closer to the Sun. When their closest distance to the Sun (perihelion) is less than 1.3 AU , they are labelled Near Earth Asteroids (NEA’s). They are interesting for several reasons. One of them is the possibility of mining them in the future. Another is the possibility that a NEA could come so close to Earth that it might collide!

Starting in the 1990’s numerous surveys have been set up to discover and monitor NEA’s. During the last decade the Catalina Sky Survey and the Pan-STARRS surveys have discovered more than thousand NEA’s yearly and every day new ones are discovered. The basic technique is to compare pictures of the sky, taken on different dates and looking for “light points” that have moved, using automated software.

In the figure below the cumulative total is shown (October 2019), split according to the estimated size of the asteroid. Total: 21059 , Larger than 140 m: 8817, Larger than 1 km: 900 (10 October 2019).

Fortunately most of these NEA’s will never come so close to Earth that there is a risk of collision. A subcategory has been defined of Potentially Hazardous Asteroids (PHA), asteroids that come closer to Earth than 0.05 AU and are larger than 140 m. At the moment the number of PHA’s is about 2000. They are of course monitored more closely.

In the left graph the total number of PHA’s is given (from 1999 until September 2019. Each year ~ 100 new PHA”s are discovered. The right graph shows the number of PHA’s larger than 1 km. The last decade only a few more have been found.

Here is a graph showing the orbits of the ~ 1400 PHA’s known in 2013.

After this explanation about NEA’s and PHA’s, you might be a bit scared that the UK tabloids were right in their warnings about imminent asteroid collisions resulting in disasters.

Let’s have a look at Sentry, operated by CNEOS, the Center for Near Earth Object Studies (objects because both asteroids and comets are studied). It is a highly automated impact prediction system, that continually monitors the most current asteroid catalog for possibilities of future impact with Earth over the next 100+ years. At the moment of writing this post, it monitors 945 objects. The probability of impact and the impact energy result in a number on the Torino Scale, comparable with the Richter index for earthquakes.

Here is the reassuring result of Sentry: All the 945 objects have a Torino index 0 ! They form no risk for Earth in the next century.

A few comments

  1. Keep in mind that the Torino Scale is defined only for the next 100 years. There exists another scale, the Palermo scale, that is more sophisticated, with both negative and positive values. The result is the same: none of the objects have positive values.
  2. When a new NEA has been discovered, its orbit is not yet well defined. It happens quite regularly that temporarily such an object has a positive Torino/Palermo index. Subsequent observations reduce the index .
  3. Sentry monitors also NEA’s that are smaller than 140 m and therefore officially no PHA’s.
  4. Asteroids, smaller than ~ 20 meter, will disintegrate in the atmosphere, leaving a streak of light, a fireball.

Earth is continuously bombarded from outer space by rocky objects. Every year about 40.000 tonnes. Occasionally a small asteroid, more often remnants of a comet or an asteroid. They are called meteorites and will “burn” in the atmosphere. Here is a map of these fireballs, recorded between 1988 and present. Size and color of the circles indicate the energy of the impact. The large orange circle is the Chelyabinsk asteroid, mentioned in the introduction of this post.

So, what about the scaremongering articles in the media? Here are again the last two captions. In total seven space rocks, horror impacts, NASA panic.

NASA tracks three space rocks heading past Earth at once – Will they hit?
NASA panic as four killer space rocks avoid horror impact with Earth

Here are the 7 scoundrels: 2019 SH3, 2019 SN3, 2019 SP. 2019 SE8,
2019 SM8 , 2018 FK5 and 2019 SD8.

The last column gives the closest distance, expressed in the Lunar Distance (
384402 km) . The size is approximate (see appendix).

NameSizeClose approachDistancein LD
2019 SH3 ~ 27m 2019-Sep-30 01:371202.000 km3.1
2019 SN3 ~ 16m 2019-Sep-30 11:45845.000 km 2.2
2019 SP ~ 44m 2019-Sep-30 17:41 2540.000 km6.6
2019 SE8 ~ 5m 2019-Oct-01 13:56159.000 km 0.41
2019 SM8 ~ 15m 2019-Oct-01 15:12 1085.000 km2.8
2019 FK5 ~ 6m 2019-Oct-01 22:565094.000 km 13.3
2019 SD8 ~ 12m 2019-Oct-02 02:29 532.000 km 1.4

In an appendix of this post I will explain how you can extract these data from the invaluable CNEOS website. In case another alarmist article will published, you can check yourself if you have to get worried 🙂

All seven asteroids are NEA’s, but none of them are Potentially Hazardous Asteroids and NASA will not have panicked at all. Actually these events are common, the past year around 2400 NEA’s have passed Earth, 73 of them even closer than the Moon (like 2019 SE8 in the table above). About 370 of them were PHA’s, but none of them came closer than 7.4 LD’s

Let’s have a look now at the first article

Asteroid shock: NASA warns of ‘100 percent’ chance of asteroid impact

A ridiculous title but the content is much better. Although there are no PHA’s that will hit Earth in the next 100+ years, on a larger time scale it may happen, so humanity should be prepared for such a situation.

Here is a informative infographic created by ESA, the European equivalent of NASA. Notice in the bottom row, how many asteroids in the medium range (100-300 m) still have to be discovered: more than 80 %!

When a big PHA asteroid is discovered on collision course with Earth, there is basically only one realistic option to avoid a disaster: to deflect it. When you are able to do that (many) decades before its impact, a relatively small change in its course might be sufficient. Many ways to deflect an asteroid are described in this Wikipedia article: Asteroid impact avoidance . And bi-annually a Planetary Defence Conference is organized, the last one was held in May 2019, here is the report .

One section of this conference was dedicated to asteroid Apophis, of special interest to me, because I have published three blog posts about it in 2010-2012 😉 . For a while after its discovery in 2004, there was concern that this 370 m big rock might hit Earth in 2036, after a close encounter in 2029.
I wrote Will the Earth be hit by Apophis in 2036? followed by a (technical) post Again Apophis . In 2012 the winner of the yearly competition for students and young professionals Move an Asteroid had a winner who proposed to deflect Apophis by paintballing 🙂 My report Paintballing Apophis! explains how he wanted to do it.

Apophis is not a PHA anymore, but will still pass Earth on 13 April 2029 at the VERY short distance of 31.000 km (less than 0.1 Lunar Distance!), so at the conference there were numerous suggestions how to make use of this opportunity.

Here is a fascinating animation of Apophis, passing Earth on 13-4-2029 (click on the image). All the blue dots are man-made objects, orbiting Earth! The red dot orbiting Earth is the International Space Station.

As in earlier conferences, part of the program is a tabletop exercise about a hypothetical asteroid threat. The participants have to discuss how to respond, which action to take, etc. Very realistic, it reads like a thriller. Scroll down to page 31 of the (pdf) report. Here are the “press releases” given daily to the participants.

In the exercise, the participants decided to deflect the asteroid by using Kinetic Impactors, heavy spacecraft that crashes with high speed into the asteroid. It is the most common way to deflect an asteroid.

THEORETICALLY! Because this technique has not yet been tested in a real situation. Quite amazing, and a source of concern for many scientists.

Finally there is now one space mission in progress to test this kinetic impactor technique and I will end this blog with a description of the Asteroid Impact and Deflection Assessment (AIDA) mission.

The mission is a cooperation between NASA and ESA and the original plan consisted of two spacecraft, a large NASA impactor called Double Asteroid Redirection Test (DART) and an ESA spacecraft , the Asteroid Impact Mission (AIM), that would watch DART crashing into the asteroid and observe the immediate effects of the impact.

Target of the mission is the asteroid Didymos, a PHA with a diameter of ~ 800 m, discovered in 1996 as 1996 GT . Don’t be surprised, but it has actually a “moon”, nicknamed Didymoon, diameter ~ 170 m, orbiting Didymos in about 12 hours.

This was the original plan: December 2020 AIM was to be launched, to arrive at Didymos in May 2022. It would go in orbit around the asteroid and study Didymos and Didymoon.

Dart would be launched in July 2021, arrive at Didymos October 2022 and crash into Didymoon, while AIM was watching! After the crash AIM would measure the change in Didymoon’s orbit, to see if this Kinetic Impactor technique is an effective way to deflect dangerous asteroids in the future.

Here is an artist impression of the mission.

And here is a very informative video, prepared by ESA in 2016 about AIM

But in December 2016, AIM was cancelled by ESA, after Germany withdrew the 60 million Euro funding for the project, to use the money instead for the ExoMars project. The Washington Post commented : Europe will send a rover to Mars but won’t protect Earth from an asteroid and a planetary scientist said “A cool project has been killed because of a lack of vision – even short term – and courage, and this is really sad

NASA decided to continue with the DART mission and measure the effects of the impact on Didymoon using earth-based telescopes instead. And ESA is planning to launch a much simpler spacecraft, named HERA, in 2023, after the crash of DART! After arrival at Didymos it would study the effects on Didymoon. But the decision to actually fly the mission still has to be taken, in November this year.

As an European I feel rather ashamed that Europe has acted this way.

x x x x x x x x x x x

Appendix

In this appendix I will explain how you can find reliable information about any asteroid, when you know its name.

First the naming convention for “minor planets” . The year of discovery is followed by two letters and (sometimes) a number. The first letter gives the half-month in which the object was first observed. The second letter stands for a number 1 until 25. (the I is left out to avoid confusion with the J) and counts the objects, discovered in that half-month. When the system was introduced, probably it was thought that there would not be more than 25 objects discovered in a half-month. But nowadays hundreds of objects are discovered every month! The number tells how many times you have to repeat the alphabet! Here is the coding table.

An example. Recently a NEO has been discovered: 2019 SP3. In the table we see that the S stands for 16-30 September and the P for 15. So this asteroid is the 3 x 25 + 15 = 90th object, discovered in the second half of September 2019.

To find the properties of this asteroid we go to the JPL Small-Body Database Browser. Enter the name 2019 SP3 (case sensitive) in the Search box.

Lots of information, mostly about the orbit (left table) and the discovery history (upper right table). Important for us are two numbers in the other tables, the MOID = 0.00252421 AU and the absolute magnitude H =26.98.

The minimal orbit intersection distance (MOID) tells us how close the orbits of 2019 SP3 and Earth can get. 0.00252421 AU = 378000 km. Less than the distance between Earth and Moon!

The absolute magnitude H indicates how bright the asteroid is. It gives us an indication about the size of the asteroid. A large asteroid will reflect more sunlight and therefore appear brighter. But this reflection also depends on the structure of the asteroid, is it coal black or more shining. This reflection property is given by the albedo , which can have a value between 0 (no reflected light) and 1 (perfect reflection).

The problem is that we have to guess what the albedo of our asteroid is. In general they are quite dark, with albedo between 0.3 and 0.05. Often a value of 0.15 is used.

Here is part of the conversion table :

Using the value of H =26.298, we find that the size of 2019 SP3 lies between 14 and 34 meter, with a probable value of 19 m.

Conclusion: with an estimated size of 19 m and a minimal distance to Earth of 378000 km, 2019 SP3 is NOT a PHA.

This is what the Daily Express reported:

Potentially hazardous’ space rock to fly closer to Earth than Moon